
Endemic melioidosis is caused by genetically diverse 
Burkholderia pseudomallei strains. However, clonal out-
breaks (multiple cases caused by 1 strain) have occurred, 
such as from contaminated potable water. B. pseudomallei 
is designated a group B bioterrorism agent, which neces-
sitates rapidly recognizing point-source outbreaks. Pulsed-
fi eld gel electrophoresis (PFGE) and multilocus sequence 
typing (MLST) can identify genetically related isolates, but 
results take several days to obtain. We developed a sim-
plifi ed 4-locus multilocus variable number tandem repeat 
analysis (MLVA-4) for rapid typing and compared results 
with PFGE and MLST for a large number of well-charac-
terized B. pseudomallei isolates. MLVA-4 compared favor-
ably with MLST and PFGE for the same isolates; it discrimi-
nated between 65 multilocus sequence types and showed 
relatedness between epidemiologically linked isolates from 
outbreak clusters and between isolates from individual pa-
tients. MLVA-4 can establish or refute that a clonal outbreak 
of melioidosis has occurred within 8 hours of receipt of 
bacterial strains.

Melioidosis is endemic in Southeast Asia and northern 
Australia (1,2). The reported incidence of melioido-

sis has been increasing within this region, and new foci and 
outbreaks of melioidosis are being described within this 
region and in distant locations such as Brazil (3) and New 
Caledonia (4). It remains unclear how much of this expan-
sion of the global distribution boundaries is from recent 

spread of the causative bacterium, Burkholderia pseudo-
mallei, and how much is from unmasking of disease after 
events such as the 2004 Asian tsunami (5,6). Molecular 
studies have shown considerable genetic diversity within 
B. pseudomallei (1,2,7). For instance, in northern Australia, 
isolates from patients are generally distinct from each other 
(8) unless there is a point-source outbreak, such as occurred 
in 2 episodes after B. pseudomallei contamination of com-
munity water supplies (9,10).

In disease-endemic regions, melioidosis case numbers 
surge in the monsoonal wet season, and individual cases 
are typically caused by different B. pseudomallei strains. 
However, under some circumstances, a series of cases can 
be caused by 1 strain, indicating that a clonal or point-
source outbreak has possibly occurred and an urgent pub-
lic health response may be required. Because several days 
are required to perform the currently available molecular 
typing methods of ribotyping, multilocus sequence typ-
ing (MLST) and pulsed-fi eld gel electrophoresis (PFGE), 
the ability to rapidly distinguish endemic infection from 
a clonal outbreak has not been possible. Furthermore, B. 
pseudomallei is classifi ed as a group B bioterrorism agent 
by the US Centers for Disease Control and Prevention, and 
the implications of a possible deliberate release warrant 
the availability of a robust method to quickly ascertain if 
concomitant cases of melioidosis are caused by 1 bacterial 
strain.

We recently described using a BOX-PCR for rapid 
typing of B. pseudomallei (11). We have now adapted 
and simplifi ed multilocus variable number tandem repeat 
(VNTR) analysis (MLVA) for rapid typing because this 
analysis potentially enables precise international strain 
comparisons. We have compared MLVA results on a wide 
range of well-characterized B. pseudomallei isolates with 
those for MLST and PFGE.
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Methods

MLVA, PFGE, and MLST
U’Ren et al. initially described 32 VNTR loci for B. 

pseudomallei that had 7–28 alleles (12). Thirty of these 
VNTR markers were subsequently used for fi ne-scale 
analysis of 121 isolates of B. pseudomallei (13). Various 
combinations of markers were tested by MLVA; we chose 
4 markers that were highly discriminatory, enabling single-
run, 4-color analysis in a DNA sequencer. The 4 VNTR 
loci chosen were 2341, 389, 1788, and 933 (12). Table 1 
shows the PCR primers used and the repeat region ampli-
fi ed for each locus. VNTR loci 2341 and 933 are from B. 
pseudomallei chromosome 1, and loci 389 and 1788 are 
from chromosome 2.

PCRs contained 0.88 U HotStarTaq DNA Polymerase 
(QIAGEN, Hilden, Germany) per reaction, 1× PCR buffer, 
1.2 M Betaine, 3 mmol/L MgCl2, 0.2 mmol/L deoxynucle-
oside triphosphates, 0.2 μM fl uorescently labeled forward 
primer, 0.2 μM reverse primer, 1 μL template DNA (0.5 ng/
μL), and double-distilled water to give a volume of 11 μL 
per reaction. Amplifi cations were conducted in Palm Cy-
clers (Corbett Research, Sydney, New South Wales, Aus-
tralia). All PCRs underwent initial denaturation at 95°C for 
5 min, then 34 cycles of 94°C for 30 s, 68°C for 30 s, and 
72°C for 30 s, followed by a fi nal extension step of 72°C 
for 5 min and 15°C for 3 min.

PCR products of each colored primer (FAM, NED, 
PET, and VIC; Table 1) were then pooled. Pooled PCR 
products were diluted with 200 μL of double-distilled wa-
ter, and 1.2 μL of PCR product was added to a mixture of a 
1:6 ratio of Hi-Di formamide (Applied Biosystems, Foster 
City, CA, USA) and GeneScan 1200 LIZ (Applied Bio-
systems) fl uorescently labeled size standard. PCR products 
were then electrophoretically separated by using a 3100xl 
DNA Sequencer (Applied Biosystems) and analyzed by 
using the ABI software program GeneMapper version 3.5 

(Applied Biosystems). PFGE with SpeI and MLST were 
performed as described (7,14).

Data Analysis
For 4-locus multilocus VNTR analysis (MLVA-4), 

GeneMapper peak fi les were imported into BioNumerics 
version 4.61 (Applied Maths BVBA, Sint-Martens-Latem, 
Belgium). Relatedness of isolates was assessed by using 
a matrix of the pairwise differences of the 4 VNTR loci, 
with a dendrogram produced by using the unweighted pair 
group method with arithmetic averages (UPGMA).

For PFGE, gel images were analyzed with BioNumerics 
version 4.61. BioNumerics application modules used were 
Fingerprint Types and Comparison and Cluster Analysis 
modules. PFGE bands (150–700 kbp) were manually as-
signed on visual inspection. PFGE dendrograms were pro-
duced with Dice UPGMA with position tolerance settings of 
0.5% optimization and 1.0% band position tolerance.

For MLST, alleles at each of the 7 previously described 
loci (7) were assigned for each isolate by comparing se-
quences to those at the B. pseudomallei MLST website 
(15). Following the standard MLST protocol, each allele 
was assigned a different allele number, and the allelic pro-
fi le (string of 7 integers) was used to defi ne the sequence 
type (ST) for that isolate. Allelic profi les of isolates were 
imported into BioNumerics version 4.61, and relatedness 
of isolates was displayed as a dendrogram by using the ma-
trix of pairwise differences in the allelic profi les and UP-
GMA clustering.

B. pseudomallei Isolates
To assess the discriminatory power of MLVA-4, direct 

comparisons were made between the MLST dendrogram 
for 65 B. pseudomallei isolates, each representing a distinct 
ST, and the MLVA-4 dendrogram for these isolates. The 
65 isolates were all from Australia and included human, 
animal, and environmental sources. There were 16 pairs of 
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Table 1. Characteristics of 4 VNTR loci used for identification of Burkholderia pseudomallei* 
VNTR loci 

Characteristic 2341 1788 933 389 
Color-labeled forward primer 
sequence (5   3 ) 

FAMGGCTTCGCACC
CGCCCCATTTCAGC 

PETGCGCGGCGAGA
ACGGCAAGAACGAA 

NEDATGGTGGCGGC
CGTCGGCGAAAACC 

VICGTTACAAGC
GCGGGTCGGCA
AGAGGCTGAAA 

Reverse primer sequence (5   3 ) GCACCGGGCGCGGC
GCACTCG 

GAGCATCGGGTGGG
CGGCGCGTATTGAT 

GCTCGAATGGGTGT
ACGAAGGGCCACGC

TGATTC 

GCCGGTGTTGA
ACGAGTGGGTG

GCGTAAGC 
Repeat sequence (5   3 ) TTCGTGCGC GTCGTGCGATCCTG

CT 
CGGCGAGGGAAA GACGAACC 

Minimum size, bp† (no. repeats) 111 (2) 235 (4) 171 (3) 221 (1) 
Maximum size, bp (no. repeats) 243 (17) 382 (13) 337 (17) 292 (10) 
No. alleles 16 10 13 9 
No. null alleles – – 2/65 STs – 
*VNTR, variable number tandem repeat; STs, sequence types. 
†Error range in fragment sizing is ± 3 bp. 
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single-locus variants (SLVs; isolates sharing identical al-
leles at 6/7 loci by MLST).

To assess the ability of MLVA-4 to identify clonal 
clusters, direct comparisons were made between the PFGE 
dendrogram for 4 defi ned clonal groups and the MLVA-4 
dendrogram for these isolates. Clonal cluster I and clonal 
cluster II consist of 8 and 7 isolates, respectively, from the 
tropical Northern Territory of Australia and were previ-
ously identifi ed as clustering by PFGE (16). These 2 clonal 
clusters represent geographically linked but epidemiologi-
cally unrelated isolates from our prospective melioidosis 
studies in northern Australia. Clonal cluster III consists of 3 
isolates of identical ST cultured from a detergent container 
implicated in an outbreak of melioidosis in Northern Terri-
tory involving 2 garage mechanics (14). Clonal cluster IV 
contains 6 isolates (5 from humans, 1 from water) from an 
outbreak of melioidosis in a remote indigenous community 
in Northern Territory. The outbreak was linked to contami-
nation of the unchlorinated community water supply, with 
several deaths reported (10).

Finally, to assess the ability of MLVA-4 to link iso-
lates from patients, we analyzed multiple isolates from 3 
patients. Patient A had chronic pulmonary melioidosis, 
and 5 B. pseudomallei isolates were recovered over 22 
months. Patient B had chronic pulmonary melioidosis, and 
7 isolates were recovered over 6 years, including 2 isolates 
from this patient’s water supply. Patient C died of melioi-
dosis septicemia; 6 isolates were recovered over 14 days. 
To construct the dendrogram for these clinical isolates, 
we chose 6 unrelated isolates representing the diversity of 
Australian isolates seen with MLVA-4 (Table 2). These 6 
isolates are indicated in Figure 1. This study was reviewed 
and approved by the Human Research Ethics Committee of 
the Northern Territory Department of Health and Commu-
nity Services and the Menzies School of Health Research, 
Darwin, Northern Territory, Australia (approval 02/38).

Results
Table 1 shows size variation with calculated number of 

repeats and number of alleles for each of the 4 VNTR loci. 
Locus 933 showed null alleles for 2 of the 65 MLST STs.

Figure 1 shows the relationship between the 65 discrete 
MLST STs and the MLVA-4 for these isolates. MLVA-4 
was able to discriminate between each ST. Relationships 
between STs seen on the MLST dendrogram were gener-
ally not preserved with MLVA-4. This is expected because 
VNTRs change too rapidly and too few loci were used to 
compensate for homoplasy at individual loci and to provide 
phylogenetic content to the assay. However, strains that 
were closely related by MLST (SLVs) could in some cases 
be seen to be related by using MVLA-4 (Figure 1).

Figure 2 shows results for the 24 isolates in the clus-
ter study, with 4 additional unlinked isolates, each from a 
different ST included for comparison. There was gener-
ally excellent agreement between PFGE and MLVA-4 for 
each of the 4 clonal clusters. PFGE clonal clusters I (MLST 
ST 132) and II (ST 109), each containing epidemiologi-
cally unrelated strains, also clustered on MLVA-4, with 
the exception of isolate MSHR1429, which by MLVA-4 
was located outside its cluster group. The detergent clus-
ter III (ST 123) was indistinguishable by MLVA-4, and 
the community outbreak strains in cluster IV (ST 125, ST 
126) separated into 2 closely linked MLVA-4 patterns, 1 of 
which included the isolate from the community water sup-
ply (MSHR491, ST 126).

Figure 3 shows MLVA-4 results for the 3 patients. Iso-
lates from patient A (ST 243) and B (ST 131) with chronic 
pulmonary melioidosis each had closely linked MLVA-4 
results with a suggestion of fi ne-scale differentiation over 
the years of infection. The 2 water supply isolates from pa-
tient B were identical to 5 of her clinical isolates. The 6 
clinical isolates from patient C, who had fatal melioidosis, 
were identical by MLVA-4, including isolates from blood 
and sputum.

Discussion
Ribotyping was the fi rst method widely used for typ-

ing B. pseudomallei (17), followed by PFGE. To date, 
PFGE has been considered the standard method for inves-
tigating potential point-source outbreaks of bacterial infec-
tions. We have previously used PFGE to link case clusters 
of melioidosis to water supply contamination (10) and to 
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Table 2. Fragment size and repeat copy number (MLVA-4 code) for 6 Burkholderia pseudomallei strains used as MLVA-4 standards* 
VNTR loci 

2341 389 1788 933

Strain Size, bp† 
Repeat copy 

no. Size, bp† 
Repeat copy 

no. Size, bp† 
Repeat copy 

no. Size, bp† 
Repeat copy 

no.
MSHR978 189.85 11 236.19 8 265.63 6 254.8 10
MSHR1822 190.25 11 245.02 9 282.56 7 290.55 13
MSHR114 145.49 6 252.32 10 298.4 8 242.57 9
MSHR1641 154.5 7 236.22 8 315.39 9 230.81 8
MSHR1153 127.93 4 236.24 8 298.51 8 194.96 5
MSHR1123 172.34 9 260.28 11 331.48 10 218.91 7
*MLVA-4, 4-locus multilocus variable number tandem repeat analysis. 
†Error range in fragment sizing is ± 3 bp. 
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contamination of a container of detergent (14). However, 
such outbreaks are rare, and we have shown that, in the 
melioidosis-endemic region of northern Australia, case 
clusters during extreme weather events are usually not ge-
netically linked by PFGE (8). These clusters simply refl ect 
the close association between rainfall and infection from 
the diverse range of B. pseudomallei strains in soil and 
surface water.

Recently, MLST has enabled new insights into region-
al and global epidemiology of melioidosis (7,16,18–20). 
Although there is excellent congruence between PFGE and 
MLST, with PFGE and MLST providing similar results 
for local epidemiologic investigations (16), MLST has the 
major advantage of absolute comparative ability across 

laboratories through the MLST website and unambiguous 
sequence type characterization.

Ribotyping and PFGE take several days to generate 
results, and MLST is expensive and requires sequencing 
and analysis capability. PCR-based typing methods have 
enabled more rapid availability of results. Randomly ampli-
fi ed polymorphic DNA (RAPD) analysis has been used to 
analyze relationships between clinical and environmental B. 
pseudomallei (21,22). However, it is not possible to make 
valid comparisons of RAPD results between laboratories 
and sometimes even between runs in the same laboratory. 
Thus, despite the speed of RAPD, we no longer use it.

Analyzing bacterial genomes for VNTRs has enabled 
MLVA assays to be developed to differentiate among me-
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Figure 1. Comparison of multilocus sequence 
typing (MLST) and 4-locus multilocus 
variable number tandem repeat analysis 
(MLVA-4) dendrograms for 65 Burkholderia 
pseudomallei isolates. MLST sequence 
type (ST) is shown for each isolate, with the 
corresponding isolate number listed for the 
MLVA-4 profi le and shown by the colored 
lines. The red asterisks indicate 6 isolates that 
represent diversity of MLVA-4; these isolates 
were used to calibrate the dendrogram in 
Figure 3.
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Figure 2. Comparison of pulsed-fi eld gel 
electrophoresis (PFGE) and 4-locus multilocus 
variable number tandem repeat analysis 
(MLVA-4) profi les for isolates in 4 clonal 
groups (see text for details). Isolate number 
with its MLST sequence type (ST) is listed 
for each isolate on the PFGE profi le, with the 
corresponding isolate number listed for the 
MLVA-4 profi le. Four unrelated isolates are 
included for comparison: 0875 (ST115), 1869 
(ST337), 1839 (ST336) and 1153 (ST117). 
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thicillin-resistant Staphylococcus aureus strains that are in-
distinguishable by PFGE (23) and to differentiate Neisseria 
meningitidis strains with identical MLST STs (24). Liu et 
al. developed the fi rst MLVA system for B. pseudomallei 
(25). They selected 5 VNTR loci from the B. pseudomallei 
genome to include in a multiplex PCR–based MLVA that 
enabled them to demonstrate extensive diversity among 32 
B. pseudomallei strains obtained during an unprecedented 
4-month increase in melioidosis cases in Singapore in early 
2004. Their results clearly excluded a point-source out-
break and suggested that the case cluster was related to the 
particularly high rainfall that occurred that year.

B. pseudomallei contains numerous VNTRs. Using a 
32 VNTR system, U’Ren et al. showed extensive diversity 
within a global B. pseudomallei isolate set (26). When 30 
of these VNTR loci were used to analyze 9 epidemiologi-
cally related B. pseudomallei isolate sets, fi ne-scale diver-
sity was found even among closely related strains, includ-
ing sequential isolates from persons (13). We sought to 
develop a rapid and robust minimum loci B. pseudomallei 
MLVA that differentiated unrelated strains and maintained 
the ability to link isolates from a point-source outbreak. 
Our approach was similar to that developed for MLVA of 
N. meningitides, in which an 8-locus system was used to 
look at the global epidemiology, with clustering similar to 
that obtained with MLST. In this system, 4 highly variable 
VNTR loci were then chosen to analyze N. meningitidis 
serogroup C strains collected during a meningococcal out-
break in the Netherlands (24).

Our 4-locus MLVA for B. pseudomallei separated all 
65 MLST STs analyzed. In addition to being highly dis-

criminatory, the MLVA-4 had good specifi city in clustering 
genetically linked B. pseudomallei strains and performed 
as well as PFGE in identifying clonal clusters. In particu-
lar, MVLA-4 could distinguish between epidemiologically 
unlinked strains that were identical by MLST and PFGE 
(groups I and II; Figure 2), while isolates from confi rmed 
point-source outbreaks (groups III and IV; Figure 2) were 
either identical or closely clustered. Similarly, multiple iso-
lates from a patient with acute disease obtained over 2 weeks 
were all identical (patient C; Figure 3), and those recovered 
over a much longer period from patients with chronic dis-
ease were closely clustered but showed some diversifi cation 
(patients A and B, chronic disease over years; Figure 3).

Because PFGE takes >5 days to obtain results, alter-
native typing methods are required to rapidly determine 
whether a cluster of melioidosis cases is genetically linked 
and therefore potentially an outbreak that requires an ur-
gent public health response. We recently demonstrated that 
BOX-PCR can perform similarly to PFGE and MLST in 
typing B. pseudomallei, with the ability to usually discrimi-
nate between unrelated isolates, while also showing relat-
edness of epidemiologically linked isolates (11). However, 
although BOX-PCR can provide results within 10 hours 
of a laboratory receiving the bacterial strains, it is less re-
producible than PFGE, and a reliable comparison of BOX-
PCR results between laboratories is not possible (27). We 
found variation in BOX-PCR results when we compared 
results from different PCR machines in our own laboratory 
and band-density differentials dependent on DNA template 
concentration (11).

MLVA-4 results are generally reproducible and can be 
obtained quickly (24). In the initial B. pseudomallei MLVA 
used to investigate the Singapore cluster, agarose gel elec-
trophoresis was used to size multiplexed PCR products and 
enabled analysis on the basis of the VNTR banding profi le 
(25). However, use of a DNA sequencer for simultaneous 
sizing of the 4 fl uorescently labeled PCR products enables 
>16 isolates to be analyzed in 1 run with our MLVA-4, 
and results are potentially available 8 hours after receipt 
of bacterial strains. For related but not identical MLVA-4 
patterns, we assessed the specifi city of strain clustering by 
generating dendrograms that compared strains in question 
with 6 reference strains that represented the considerable 
diversity seen on MLVA-4 (Figures 1, 3). Table 2 provides 
fragment size and repeat copy number (MLVA-4 code) 
data on these 6 strains for use as standards by other labo-
ratories in generating their own MLVA-4 results for their 
own B. pseudomallei strains, with potential for direct com-
parison of MLVA-4 results between different laboratories. 
Subsequently, MLST can be used to verify relatedness of 
strains through the MLST database.

In summary, we have developed a simplifi ed 4-locus 
MLVA that compares favorably with PFGE and MLST. 
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MSHR1043 Sputum 2000 Jul 11 131
MSHR1218 Sputum 2001 May 8 131
MSHR1288 Throat swab 2001 Oct 16 131
MSHR1418 Sputum 2002 May 23 131
MSHR1435 Environmental 2005 Oct 3 131
MSHR1498 Environmental 2003 Jan 20 131
MSHR2408 Sputum 2006 Jun 25 131
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MSHR1459 Sputum 2002 Nov 27 131
MSHR1641 Environmental 2003 Sep 2 332
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MSHR465C Sputum 1997 Jan 16 132
MSHR465D Sputum 1997 Jan 16 132
MSHR465F Swab 1997 Jan 18 132
MSHR465J Sputum 1997 Jan 27 132
MSHR1123 Blood 2001 Mar 2 143

Figure 3. Dendrogram showing 4-locus multilocus variable number 
tandem repeat analysis profi les for isolates from 3 patients with 
melioidosis, with isolate number and multilocus sequence typing 
sequence type (ST) listed (see text for details). Six isolates used to 
calibrate the dendrogram are indicated by asterisks in Figure 1 and 
listed in Table 2. CSF, cerebrospinal fl uid.
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This analysis can be used to recognize or exclude a point-
source outbreak of melioidosis within 8 hours of receipt of 
B. pseudomallei strains.
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